Definition Let R be a ring and M a left R-module. Let m∈M. The annihilator of M is the subset AnnR(M)={r∈R∣rm=0\mboxforallm∈M}. As an ideal AnnR(M) is a left ideal of R. Proof Let a,b∈AnnR(M). Then (a+b)m=am+bm=0+0=0. Therefore a+b∈AnnR(M). Next, let r∈R, (ra)⋅m=r(a⋅m)=r⋅0=0 Hence, ra∈AnnR(M).